Back to thoughts
4 min read

RAG Architecture for Legal Documents

How we built a retrieval-augmented generation system that preserves legal document structure and meaning. Challenges with chunking strategies and context preservation.

RAG Architecture for Legal Documents

Legal documents present unique challenges for RAG (Retrieval-Augmented Generation) systems. Unlike typical text, legal content relies heavily on structure, cross-references, and precise language where context is everything. Here's how we built a RAG system that preserves legal document integrity.

The Legal Document Challenge

Legal documents have characteristics that break traditional RAG approaches:

- Hierarchical structure: Sections, subsections, clauses with complex relationships

- Cross-references: "As defined in Section 3.2.1" requires maintaining document structure

- Context dependency: Meaning changes dramatically based on surrounding clauses

- Precision requirements: Slight misinterpretations can have serious legal consequences

Traditional RAG Limitations

Standard chunking strategies fail with legal documents:

\\\python

Traditional approach - loses structure

def simple_chunk(text, chunk_size=1000):

return [text[i:i+chunk_size] for i in range(0, len(text), chunk_size)]

\\\

This approach:

- Breaks mid-sentence or mid-clause

- Loses hierarchical relationships

- Separates definitions from usage

- Destroys cross-reference context

Our Legal-Specific Approach

Structure-Aware Chunking

We developed a chunking strategy that respects legal document structure:

\\\python

class LegalDocumentChunker:

def __init__(self):

self.section_patterns = [

r'^(\d+\.)+\s+', # 1.2.3 Section numbering

r'^[A-Z]+\.\s+', # A. B. C. lettered sections

r'^$$[a-z]$$\s+', # (a) (b) (c) subsections

]

def chunk_by_structure(self, document):

sections = self.identify_sections(document)

chunks = []

for section in sections:

# Include parent context

chunk = self.build_contextual_chunk(section)

chunks.append(chunk)

return chunks

def build_contextual_chunk(self, section):

# Include section hierarchy for context

context = self.get_parent_sections(section)

return {

'content': section.content,

'context': context,

'metadata': {

'section_number': section.number,

'section_title': section.title,

'document_path': section.path

}

}

\\\

Cross-Reference Resolution

Legal documents are full of internal references that need resolution:

\\\python

class CrossReferenceResolver:

def __init__(self, document_structure):

self.structure = document_structure

self.reference_map = self.build_reference_map()

def resolve_references(self, chunk):

# Find references like "Section 3.2.1" or "as defined above"

references = self.extract_references(chunk.content)

resolved_content = chunk.content

for ref in references:

target_section = self.reference_map.get(ref)

if target_section:

# Inject referenced content inline

resolved_content = self.inject_reference(

resolved_content, ref, target_section

)

return resolved_content

\\\

Semantic Chunking with Legal Context

We combine structural chunking with semantic similarity:

\\\python

def semantic_legal_chunking(document, max_chunk_size=2000):

structural_chunks = structure_aware_chunk(document)

semantic_chunks = []

current_chunk = []

current_size = 0

for chunk in structural_chunks:

# Check semantic similarity with current chunk

similarity = calculate_legal_similarity(current_chunk, chunk)

if similarity > 0.7 and current_size + len(chunk) < max_chunk_size:

current_chunk.append(chunk)

current_size += len(chunk)

else:

# Finalize current chunk with full context

if current_chunk:

semantic_chunks.append(

create_contextual_chunk(current_chunk)

)

current_chunk = [chunk]

current_size = len(chunk)

return semantic_chunks

\\\

Retrieval Strategy

Legal document retrieval requires multiple strategies:

Hybrid Search

\\\python

class LegalRetriever:

def __init__(self, vector_store, keyword_index):

self.vector_store = vector_store

self.keyword_index = keyword_index

def retrieve(self, query, k=5):

# Semantic search for conceptual matches

semantic_results = self.vector_store.similarity_search(query, k=k)

# Keyword search for exact legal terms

keyword_results = self.keyword_index.search(

self.extract_legal_terms(query), k=k

)

# Combine and rerank

combined_results = self.merge_results(

semantic_results, keyword_results

)

return self.rerank_by_legal_relevance(combined_results)

\\\

Context Expansion

Retrieved chunks are expanded with necessary context:

\\\python

def expand_legal_context(chunk, document_structure):

expanded_chunk = chunk.copy()

# Add parent section context

parent_sections = get_parent_hierarchy(chunk, document_structure)

expanded_chunk['parent_context'] = parent_sections

# Add related definitions

definitions = find_relevant_definitions(chunk, document_structure)

expanded_chunk['definitions'] = definitions

# Add cross-referenced sections

references = resolve_cross_references(chunk, document_structure)

expanded_chunk['references'] = references

return expanded_chunk

\\\

Generation with Legal Precision

The generation phase requires special handling for legal accuracy:

\\\python

class LegalRAGGenerator:

def __init__(self, llm):

self.llm = llm

self.legal_prompt_template = """

You are a legal document analysis assistant.

CRITICAL REQUIREMENTS:

- Maintain exact legal terminology

- Preserve section references and citations

- Indicate uncertainty when context is insufficient

- Never paraphrase legal definitions

Context: {context}

Question: {question}

Response:"""

def generate_response(self, query, retrieved_chunks):

# Build comprehensive context

context = self.build_legal_context(retrieved_chunks)

# Generate with legal constraints

response = self.llm.generate(

self.legal_prompt_template.format(

context=context,

question=query

),

temperature=0.1, # Low temperature for precision

max_tokens=1000

)

# Validate legal accuracy

return self.validate_legal_response(response, retrieved_chunks)

\\\

Evaluation and Validation

Legal RAG systems require rigorous evaluation:

Accuracy Metrics

\\\python

def evaluate_legal_rag(test_cases):

metrics = {

'factual_accuracy': 0,

'citation_accuracy': 0,

'completeness': 0,

'legal_precision': 0

}

for case in test_cases:

response = rag_system.query(case.question)

# Check factual accuracy against ground truth

metrics['factual_accuracy'] += check_facts(

response, case.ground_truth

)

# Verify citations are correct and complete

metrics['citation_accuracy'] += validate_citations(

response, case.source_documents

)

# Assess completeness of legal analysis

metrics['completeness'] += assess_completeness(

response, case.required_elements

)

return normalize_metrics(metrics, len(test_cases))

\\\

Lessons Learned

1. Structure matters more than semantics in legal documents

2. Context expansion is critical - legal meaning depends on surrounding text

3. Cross-reference resolution can make or break accuracy

4. Conservative generation is better than creative interpretation

5. Human validation remains essential for legal applications

Future Improvements

- Dynamic chunking based on query type

- Legal reasoning chains for complex analysis

- Multi-document synthesis for comparative analysis

- Regulatory compliance tracking across jurisdictions

Building RAG systems for legal documents requires rethinking traditional approaches. The investment in legal-specific architecture pays off in accuracy and reliability that legal professionals can trust.